Penerapan Fuzzy Logic Dan Case-Based Reasoning Pada Sistem Pakar Diagnosis Penyakit Gizi Balita di Puskesmas Manyak Payed
Sari
Abstrak: Status gizi balita berdampak signifikan terhadap kesehatan dan perkembangan mereka, dengan gizi buruk sebagai salah satu penyebab utama kematian balita. Deteksi dini penyakit gizi menjadi kunci untuk meningkatkan kualitas pertumbuhan dan perkembangan anak. Penelitian ini mengembangkan sistem pakar berbasis Fuzzy Logic dan Case-Based Reasoning (CBR) untuk mendiagnosis tujuh penyakit gizi pada balita, termasuk defisiensi vitamin A, kekurangan yodium, anemia, stunting, marasmus, kwashiorkor, dan obesitas, dengan mempertimbangkan 47 gejala. Data dikumpulkan melalui wawancara, observasi, dan studi literatur di Puskesmas Manyak Payed. Sistem dikembangkan menggunakan PHP untuk logika aplikasi, MySQL untuk basis data, dan dirancang menggunakan diagram ERD. Fuzzy Logic digunakan untuk menentukan tingkat keparahan gejala (rendah, sedang, tinggi), sedangkan CBR menilai kemiripan kasus baru dengan data sebelumnya. Hasil pengujian menggunakan 20 data kasus menunjukkan akurasi diagnosis sebesar 100%, dengan tingkat keparahan dan relevansi masing-masing 85%. Penerapan Fuzzy Logic dan Case-Based Reasoning (CBR) dalam sistem pakar ini telah terbukti efektif dalam meningkatkan akurasi dan relevansi diagnosis penyakit gizi pada balita. Sistem ini efektif dalam mendukung deteksi dini penyakit gizi dan membantu tenaga kesehatan memberikan intervensi yang lebih cepat dan tepat, sehingga dapat meningkatkan kesehatan serta kualitas hidup balita.
Kata kunci: balita; case-based reasoning; fuzzy logic; penyakit gizi; sistem pakar
Abstract: The nutritional status of toddlers significantly impacts their health and development, with malnutrition being one of the leading causes of toddler mortality. Early detection of nutritional diseases is crucial to improving children's growth and development. This research developed an expert system based on Fuzzy Logic and Case-Based Reasoning (CBR) to diagnose seven nutritional diseases in toddlers, including vitamin A deficiency, iodine deficiency, anemia, stunting, marasmus, kwashiorkor, and obesity, considering 47 symptoms. Data was collected through interviews, observations, and literature studies at Puskesmas Manyak Payed. The system was developed using PHP for application logic, MySQL for the database, and designed using an ERD diagram. Fuzzy Logic was used to determine the severity of symptoms (low, moderate, high), while CBR assessed the similarity between new cases and previous data. Testing results using 20 case data showed a diagnosis accuracy of 100%, with severity and relevance each reaching 85%. The implementation of Fuzzy Logic and Case-Based Reasoning (CBR) in this expert system has proven effective in improving the accuracy and relevance of diagnosing nutritional diseases in toddlers. This system is effective in supporting the early detection of nutritional diseases and assisting healthcare providers in delivering faster and more accurate interventions, thereby improving the health and quality of life of toddlers.
Keywords: case-based reasoning; expert system; fuzzy logic; nutritional diseases; toddler
Teks Lengkap:
PDF (Indonesia)DOI: https://doi.org/10.47324/ilkominfo.v8i1.298
Article Statics


This work is licensed under a Creative Commons Attribution 4.0 International License.
_______________________________________________________________________________________________________________________
______________________________________________________________________________________________________________________________
INFORMASI DAN KONTAK JURNAL LPPM AIKOM TERNATE
_________________________________________________________________________________________________________________________